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Abstract

Reservoir classification is an essential step for the exploration
and production process in the oil and gas industry. An appro-
priate automatic reservoir classification will not only reduce
the manual workloads of experts, but also help petroleum
companies to make optimal decisions efficiently, which in
turn will dramatically reduce the costs. Existing methods
mainly focused on generating reservoir classification in a sin-
gle geological block but failed to work well on a new oil-
field block. Indeed, how to transfer the subsurface charac-
teristics and make accurate reservoir classification across the
geological oilfields is a very important but challenging prob-
lem. To that end, in this paper, we present a focused study
on the cross-oilfield reservoir classification task. Specifically,
we first propose a Multi-scale Sensor Extraction (MSE) mod-
ule to extract the multi-scale feature representations of geo-
logical characteristics from multivariate well logs. Further-
more, we design an encoder-decoder module, i.e., Specific
Feature Learning (SFL), to take advantage of specific in-
formation of both oilfields. Then, we develop a Knowledge-
Attentive Transfer (KAT) module to learn the feature-invariant
representation and transfer the geological knowledge from a
source oilfield to a target oilfield. Finally, we evaluate our
approaches by conducting extensive experiments with real-
world industrial datasets. The experimental results clearly
demonstrate the effectiveness of our proposed approaches to
transfer the geological knowledge and generate the cross-
oilfield reservoir classifications.

Introduction
Reservoir classification, which aims at identifying hydro-
carbon reservoir under subsurface, is one of the most es-
sential steps for the exploration and development process
in the oil and gas industry. Figure 1 demonstrates a sam-
ple workflow from logging the well to making the reservoir
classifications. Specifically, engineers will first use various
sensors during well logging to obtain a continuous record of
the geological properties of the formation. Next, with simple
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Figure 1: Workflow of the oil exploration process.

rules, such as shale baseline (Klusman 1980), experts can
easily divide the reservoirs. Then, experts will analyze the
well logs to identify the location and quantity of the hydro-
carbon and determine the type of formation (e.g. oil, gas or
water). This process is so-called the reservoir classification.
Finally, based on the classification results of reservoirs, the
engineers will make further drilling and production plan. In
fact, in real industrial activities, the production of about 40%
of shale wells underperform expectations (Scollard 2014)
because of inaccurate reservoir classifications and inappro-
priate understanding of the subsurface. To that end, how to
learn the subsurface characteristics and make accurate reser-
voir classification are the major concerning issues in both
industry and academia.

Traditionally, researchers mainly use the reservoir model-
ing to explore the subsurface (Tong et al. 2017) or expert sys-
tems to assist the reservoir classification process (Einstein,
Edwards et al. 1990). However, these methods largely rely
on the experts’ experiences and manual processes which are
costly in time and money. Recently, thanks to the tremen-
dous success of machine learning and data mining, auto-
mated methods have been emerging as promising tools to en-
hance the oil and gas exploration process (Holdaway 2014;
Mohaghegh et al. 2011). Unfortunately, existing researches
mostly apply supervised learning methods to generate the
reservoir classification from well logs in a specific geologi-
cal block. That makes it difficult for these methods to work
well in a newly discovered oil field due to different geologi-
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cal conditions and diverse feature distributions. Considering
the highly time and economic costs for experts’ processing
and labeling, it is not a good solution to retrain or fine-tune
the model with new labeled data in a different oilfield. To
that end, it is an urgent demand to explore the cross-oilfield
reservoir classification approach and improve the availabil-
ity of automated methods in real industrial scenarios.

However, it is still an open issue with great challenges to
learn the subsurface characteristics and make accurate reser-
voir classifications across oilfields. First, understanding the
subsurface from well logs is still an open issue. On the one
hand, the geological characteristics are complex and affected
by multivariate features. On the other hand, the different
well log scales of depth interval have different effects on the
representation of these geological characteristics. Second, in
the real industry scenario, the experts will choose different
sensors to log geological conditions according to the envi-
ronmental demands in distinct geological blocks. For this
reason, sensing data from different oilfields are always in-
consistent, which makes it is hard to directly transfer the
model from one oilfield to another oilfield. Last but not least,
it is difficult to learn the invariant features and transfer the
geological knowledge from a source oilfield to the target oil-
field due to the various feature distributions.

To address these challenges, in this paper, we propose a
novel solution, i.e., Multi-scale Sensor Knowledge Trans-
fer (MSKT) model, to transfer the geological knowledge
from a source oilfield to another target oilfield and au-
tomatically generate cross-oilfield reservoir classifications.
More specifically, we first develop a Multi-scale Sensor
Extraction (MSE) to extract the multi-scale feature repre-
sentations of geological characteristics from multivariate
well logs. Meanwhile, for addressing the inconsistent fea-
tures between the source and target oilfield, we propose
an encoder-decoder module, i.e., Specific Feature Learning
(SFL), to learning the additional geological features from
discriminative well logs in both oilfields. Then, we propose
a Knowledge-Attentive Transfer (KAT) module to learn the
oilfield-invariant representation and transfer the geological
knowledge from a source oilfield to a target oilfield. Finally,
we evaluate our approaches by conducting extensive exper-
iments with a real-world industry dataset. The experimental
results clearly demonstrate the effectiveness of our proposed
approaches to transfer the geological knowledge and gener-
ate the cross-oilfield reservoir classifications.

Related Work
The related works can be grouped into three categories: the
reservoir classification, the researches on time series classi-
fication, and the domain adaption.

Reservoir Classification. Reservoir classification aims at
generating the oil and gas properties in a specific depth in-
terval based on well log features. Accuracy reservoir clas-
sifications are vital to maximizing returns on dollar invest-
ments in a well (Baldwin et al. 1989). Actually, researchers
have made lots of continuing efforts for improved accu-
racy in measuring and estimating reservoir properties from
the well logs (Szucs and Civan 1996). For a long time, ex-

perts mainly use the reservoir modeling (Pyrcz and Deutsch
2014) to determine the formation parameters and generate
the classification of reservoirs. These methods are largely
relied on the experts’ experiences and need much time for
manually analyzing the well log data. These years, substan-
tial increases in data availability and increasingly realistic
characters of computer technologies make geoscience enter
the era of artificial intelligence (Karpatne et al. 2018; Bergen
et al. 2019). Along this line, some researchers focus on auto-
mated algorithms to generate lithofacies and reservoir prop-
erties (Holdaway 2014; Mohaghegh et al. 2011; Hall 2016).
Unfortunately, existing researches mostly apply supervised
learning methods to generate the reservoir classifications in
a specific geological block. But in a new oilfield block, there
is lack of training data. These supervised learning methods
cannot work well due to the different feature distributions
of distinct geological environments. To that end, in this pa-
per, we present a novel study on the cross-oilfield transfer
learning to address this problem.

Time Series Classification. As the well logs are a series
of sensor data indicating chemical and physical characteris-
tics of geology, the reservoir classification then is similar to
the time series classification task. Existing researches related
to the time series classification can be classified into two
main groups: traditional methods and deep learning meth-
ods. For a long time, researchers mainly use feature-based
approaches or methods to extract a set of features that repre-
sent time series patterns (Baydogan, Runger, and Tuv 2013;
Schäfer and Leser 2017), such as Bag-of-features (Baydo-
gan, Runger, and Tuv 2013). These methods mainly rely on
the feature construction of the time series and required heavy
feature engineering (Karim et al. 2018). Recently, more and
more researchers begin to employ deep learning methods to
address time series classification tasks (Zheng et al. 2014;
Wang, Yan, and Oates 2017). Along this line, some stud-
ies propose a hybrid model incorporating CNN with Long
Short-Term Memory (LSTM) networks (Karim et al. 2018;
Karim, Majumdar, and Darabi 2019). These deep learning
methods are efficient and do not require any heavy prepro-
cessing on the data or feature engineering.

Domain Adaptation. Domain adaptation is another re-
lated research area, which mainly focus on a type of trans-
fer learning scenario where two domains (source and tar-
get) share their feature space but have different distribu-
tions (Purushotham et al. 2017). Existing studies mainly
attempt to solve the issue of enabling a model trained
on a certain dataset to perform well on a differently dis-
tributed dataset, of which the labels are completely or par-
tially unknown (Ben-David et al. 2006). Along this line,
many researchers focus on reducing the discrepancy be-
tween the source and target domains, including alignments
of the subspaces (Fernando et al. 2013), parameter aug-
mentation (Watanabe, Hashimoto, and Tsuruoka 2016), and
domain-invariant projection (Ganin et al. 2016; Baktash-
motlagh et al. 2013). For example, Ganin et al. propose a
Domain-Adversarial Neural Network (DANN) (Ganin et al.
2016) to address domain adaptation by learning domain-
invariant features through a neural network architecture,
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Figure 2: Example of multivariate well logs from various
sensors.

which consists of three main components, i.e., a feature ex-
tractor, a discriminative classifier, and an adversarial domain
classifier. In particular, DANN mainly focus on learning the
domain-invariant features which could make the model ap-
propriately classify samples from the target domain without
having access to labels of the target’s training set.

Preliminaries

In this section, we first give a brief overview of well logs.
Then, we introduce the research problem of cross-block
reservoir classification and overview of our proposed Multi-
scale Sensor Knowledge Transfer (MSKT) model.

Well Log

A well log records continuous sensor values along with the
depth, which indicates subsurface geological properties. It
often consists of a number of measurements, such as gamma
radiation and interval transit time, to detect and quantify oil
and gas reserves. For example, the Gamma Ray (GR) log
is recorded during a sonic shear test for detecting forma-
tion change and identifying the location of the shale for-
mation. The Spontaneous Potential (SP) log is recorded as
an electrode relative to a fixed reference electrode to re-
flect the electric potential difference. The CALiper (CAL)
log provides the borehole diameter curves of open-hole and
cased wells, and provide support for monitoring the quality
of drilling, casing, and cementing. The ResisTivity (RT) and
AcoustiC (AC) measure the formation resistivity and inter-
val transit time, respectively. The values of well logs are of-
ten measured at every 0.125 meters. These well logs are the
major features for the reservoir classification task. Figure 2
shows an example of multivariate well logs mainly used in
this paper. The y-axis of this figure represents the measured
depth, the four first plots on the left show the measured logs
and the last plot demonstrates the reservoir classification re-
sults by experts.

Problem and Framework Overview
Problem Statement. In this paper, we propose a focused
study on the cross-oilfield reservoir classification problem.
Formally, given a set of labeled training well log data DS

i =

{XS
i , y

S
i }N

S

i=1 from source oilfield and unlabeled training
data DT

i = {XT
j }N

T

j=1 from the target oilfield, where NS

and NT are the number of labeled data and unlabeled data,
Xi = [x1, x2, · · · , xN ] are the well log series in a spe-
cific depth interval [0 : N ]. For each depth point xt =
[xl1t , x

l2
t , · · · , xlnt ], where xl1t is the measurement of well log

l1, |ln| is the number of input well logs. For each input sam-
ple Xi, our task is to predict the target reservoir class of
Xi. As mentioned above, in the real industry scenario, the
experts will choose different sensors to log geological con-
ditions according to the environmental demands in distinct
geological oilfields. We define these different well logs as
specific features X ′i . Then, the goal of cross-oilfield reser-
voir classification is to train a robust model based on labeled
data in the source oilfield and adapt it to predict the unla-
beled data in the target oilfield.

Framework Overview. For tackling the above problem,
we propose a knowledge-powered solution framework, i.e.,
Multi-scale Sensor Knowledge Transfer (MSKT) model,
which is shown in Figure 3. There are three major com-
ponents: (1) Multi-scale Sensor Extraction (MSE) module
to generate geophysical features from well logs; (2) Spe-
cific Feature Learning (SFL) module to take advantages of
the additional specific features from discriminative well logs
across various oilfields; (3) Knowledge-Attentive Transfer
(KAT) module to transfer the geophysical knowledge from a
source block to a target block and generate oilfield-invariant
feature representations.

Methodology
In this section, we introduce the details of our pro-
posed method, i.e., Multi-scale Sensor Knowledge Transfer
(MSKT) model.

Multi-scale Sensor Extraction
As mentioned above, the well logs are a series of sensor data.
Thus, it is important to model the fluctuation of sensor sig-
nals. Moreover, the reservoir depth is not determined before
well logging and the different scales of geophysical and geo-
chemical signals may have different effects on the represen-
tation of geological characteristics. To that end, we propose
a multi-scale sensor extraction module to generate the rep-
resentation of geological characteristics at various depth in-
terval. More specifically, considering the long-term depen-
dencies and gradient vanishing and expansion problems in
sequential learning tasks (Li et al. 2018; Wu et al. 2020),
we firstly develop an LSTM (Hochreiter and Schmidhuber
1997) model to learn hidden states of the global series data.
Formally, given the well log series Xi = [x1, x2, · · · , xT ]
as the input, we essentially use the final hidden state Ê0 =
LSTM(Xi) as the global representation of the well logs.

While LSTM has possessed the ability to learn long-
term dependencies in sequences, it is still limited to explore
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Figure 3: The overview of Multi-scale Sensor Knowledge Transfer (MSKT) model.

the feature relationships under multi-scale perspectives. As
Temporal Convolutional Network (TCN) has been proved
to successfully capture the local spatiotemporal relation-
ships (Lea et al. 2016), we develop multiple convolutional
networks to generate the multi-scale feature representations.
Specifically, we apply a set of 1D filters on each of L con-
volutional layers that capture the fluctuation of input signals
over different scales. For the l-th layer, the component of
activation E(l)

s at s scale for each step t can be defined as:

E
(l)
s,t = fs

(
s∑

t′=1

〈
W

(l)
t′ , E

(l−1)
t+s−t′

〉
+ b̂(l)

)
, (1)

where l ∈ {1, . . . , L} is the layer index, W (l)
t′ is the weight

matrix, b̂(l) is the basis term, s is the filter duration, and fs(·)
is a Rectified Linear Unit. We perform a batch normalization
layer (Ioffe and Szegedy 2015) after the convolutional out-
put of each scale. Then, with a global average polling layer,
we can generate the final representation of the target scale s
as Ês = GlobalAveragePooling

(
E

(L)
s,t

)
.

Next, we have generate both of the global representa-
tion Ê0 and multi-scale representations {Ês1, . . . , Êsn}. We
can simplify our Multi-scale Sensor Extraction module as
G(Xi) = [Ê0, Ês1, . . . , Êsn].

Specific Feature Learning
So far, we have generated multi-scale well log features from
the common sensors in both the source and target oilfields,
such as the gamma ray sensor and the acoustic wave sensor.
However, in the real industry scenario, it is challenging to
ensure that cross-oilfield sensing data can be consistent. For

example, oilfield A may have three well logs, i.e., gamma
ray, acoustic wave and spontaneous potential. Besides these
three well logs, oilfield B may have another two well logs,
i.e., compensating neutron well logging and resistivity well
logging. There are mainly two reasons for this feature incon-
sistency. On the one hand, because of the various exploration
and production time, the exploration techniques and sensors
are different. On the other hand, with the consideration of
cost and specific geological environments, the exploration
and production sensors in different oilfields will also vary.

Actually, this feature inconsistency makes a great chal-
lenging to transfer the geological knowledge across vari-
ous oilfields. Intuitively, we can only use the common sen-
sor data to make reservoir classifications. However, it will
lead to a lack of some important geological information.
To this end, we propose a Specific Feature Learning (SFL)
method to make use of the specific features from discrimina-
tive well logs in different oilfields. More specifically, we first
develop an encoder-decoder model to discriminative learn-
ing the specific features from the source and target oilfield.
We use X ′Si and X ′Ti to denote the specific feature inputs
from the source and target oilfield, respectively. Then, we
can generate specific feature representations from two sep-
arate encoder networks. Here, we use two Multi-scale Sen-
sor Extraction modules with different input settings as en-
coder networks, so we can generate the specific feature rep-
resentationsG(X ′Si ), G(X

′T
i ) for both the source and target

oilfields. Next, in order to train the decoder, we develop a
three-layers MLP model as the shared encoder network to
ensure specific feature representations are informative and
available. Finally, we use mean square error to optimize the
whole encoder-decoder module as follows.
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Le(X̂i, Xi) =
1

|lS |
∑

Xl∈Xi

(
X̂ l −X l

)2
, (2)

where X̂ l is the decoder prediction of well log l and X l is
the ground-truth. Here, we use the common well log feature
input XS

i , X
T
i as the ground-truth of the source and target

oilfields, respectively. Therefore, the final loss function of
encoder-decoder is Led = Le(X̂S

i , X
S
i ) + Le(X̂T

i , X
T
i ).

Moreover, considering the diverse distributions of specific
features from the different oilfield, we use Maximum Mean
Discrepancy (MMD) (Quadrianto, Petterson, and Smola
2009) to make the oilfield-invariant specific feature repre-
sentations. More formally,

LMMD =MMD
[
G(X ′

S
i ), G(X

′T
i )
]
, (3)

where G(X ′Si ), G(X
′T
i ) denote the representations of spe-

cific features from the source oilfield and the target oilfield,
respectively.

Knowledge-Attentive Transfer
After we extract well log features from different scales, we
have generated the well log representation of each depth in-
terval. Next, we introduce how to transfer the geological
knowledge from different oilfields and get the final fore-
casting for a given well e and well logs Xi. Actually, for
transferring the geological knowledge from a source oilfield
to a target oilfield, it is important to learning the invariant
features which are effective for the task of reservoir classi-
fications in both source and target oilfields. To that end, we
propose the knowledge-Attentive Transfer (KAT) learning
module to promote the emergence of features that are not
only discriminative for the reservoir classification task on
the source labeled oilfield but also indiscriminate to the shift
between the source and target oilfields. In detail, we design
two classifiers, i.e., the reservoir classifier and the domain
classifier, to learn the cross-oilfield geological feature repre-
sentations from source oilfield data and target oilfield data.
Next, we introduce these two classifiers in details.

Oilfield Classifier. The domain classifier aims to learn
cross-oilfield geological feature representations, where the
inputs are the labeled data from the source oilfield and the
unlabeled data from the target oilfield. Specifically, we pro-
pose the domain classification to predict the oilfield labels of
the samples from the source and target oilfields. For learn-
ing the latent relationships between the features in labeled
and unlabeled data, we mainly aim to encourage the feature
extractor to generate the domain-invariant representations.
Indeed, the traditional training strategy for the classifier is
to minimize the classification error, i.e., to distinguish the
two oilfields as accurately as possible. Differently, the do-
main classifier is to learn the invariant feature representa-
tions which are indiscriminate to the shift between the oil-
fields and make the domain classifier cannot discriminate
the source and target oilfields. With this intention, we add
the Gradient Reversal Layer (GRL) (Ganin et al. 2016) to
reverse the gradient direction in the training process. More

formally, we can describe the gradient reversal layer as a
“pseudo-function” (Zhang et al. 2019), which is defined by
two incompatible equations describing its forward and back-
propagation processes:

G′(x) = x,
∂G′(x)

∂x
= −λI. (4)

In our model, G′(x) = G(Xi) = [Ê0, Ês1, . . . , Êsn] is
the function of our Multi-scale Sensor Extraction process.
Then, we can get the result of domain classifier as:

yd = Softmax(
∑
s′∈S

W d
s′Ês′)), (5)

where fdm is a one-layer MultiLayer Perceptron (MLP)
model, and S = {0, s1, · · · , sn} is the scale collection of
the feature extractor. After a softmax layer, we can obtain the
domain classification scores yd. Eventually, we can optimize
the domain classifier by the cross-entropy loss functions:

Lblo = − 1

Nd

Nd∑
i=1

yd ln y
′

d + (1− yd) ln(1− y
′

d), (6)

where Nd is the number of all samples in the source and
target oilfields, y

′

d denotes the ground truth of the domain
class. Therefore, in Eq. 4, during the forward pass, the input
is left unchanged, while during backpropagation, the gradi-
ent is negated. The loss in Eq. 6 is thus maximised, thereby
encouraging the feature extractor to find representations of
the features which are oilfield-invariant.

Reservoir Classifier. The reservoir classifier is the main
component, which aims at mining the subsurface geologi-
cal condition and detecting the classes of underground oil
and gas reserves. Actually, due to the action of plate tectonic
forces, the subsurface geological conditions are complex and
the stratifications are always uncertain even in the same oil-
field. To that end, the geological characteristics may vary
greatly from well to another well, especially when two wells
are geographically far apart. In other words, the geographi-
cally closer wells will have more similar geological proper-
ties (such as lithology, mineral). For capturing the geograph-
ical relationships between two wells, we utilize a knowledge
graph to jointly model the geographical and geological rela-
tionships of wells. More specifically, we develop an explo-
ration knowledge graph. There are 60,406 entities from three
categories, i.e., oilfields, wells and strata, and eight relation-
ships (such as ‘Adjacent Well’, ‘isIn oilfield’ and ‘Upper’ or
‘lower’ strata) between them. Then, for learning the distribu-
tional representations of geographical and geological knowl-
edge, we utilize an effective and efficient knowledge graph
embedding method, i.e., TransR (Lin et al. 2015), to gener-
ate the entity embedding vectors v. Along this line, the well
k can be represented as an entity vector vk. As mentioned
above, the closer wells may have more similar geological
properties, then vk contains this transferred knowledge re-
lated to other wells.

Indeed, the geological feature from each scale has a differ-
ent influence on the representation of well logs. Then, how
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Statistics #9FAB2 #BF8A9
# of total wells 445 221

# of total samples 1,076,537 662,067
# of wells in training set 178 88
# of wells in test set 88 89
# of unlabeled wells 179 44
# of total well logs 21 12

# of common well logs 5 5

Table 1: The statistics of datasets.

to qualify the contributions of each scale and learn the spe-
cial representation for it is an open issue. Considering the
different influence on the representation of well logs from
the different wells and different feature extractor scales, we
propose an attention mechanism to highlight different parts
of the depth scale by assigning weights to encoding vectors
in each scale of well log representation. More formally, we
can generate the attention score αs for each feature scale s
in the target well k as:

Us = V T tanh(W1Ês +W2vk), αs =
exp (Us)∑

s′∈S exp (Us′)
,

(7)
where V T ,W1,W2 are weighted matrices, Ês ∈
Concat(G(Xi), G(X

′S
i )) is the representation of both

common and specific well logs in the source oilfield and
ek is the graph embedding vector of well k. Then, we can
generate our prediction score of the reservoir classification
incorporating the knowledge from well k as:

yr = Softmax(frm(W r
S

∑
s′∈S

αsÊs)), (8)

where frm is a two-layer MultiLayer Perceptron (MLP)
model, W r

S are weighted matrices. After a softmax layer,
we can obtain the reservoir classification scores. Eventually,
we can optimize the reservoir classifier by the cross-entropy
loss function as:

Lres = −
1

Nr

Nr∑
i=1

M∑
m=1

y
′

r,m ln (yr,m), (9)

where Nr denotes the number of labeled samples from
source oilfield, M is the number of reservoir classes,
y

′

r,m, yr,m are the ground truth and prediction score for class
m. Therefore, in training stage, our optimization function is
L = Led + LMMD + Lres + Lblo. Finally, we use Adam
algorithm (Kingma and Ba 2015) in mini-batches to update
our model parameters with the backpropagation.

Experiment
In this section, we will construct extensive experiments on
a large-scale real-world data set. First, we make data analy-
sis and explore the feature invariance of cross-oilfield well
log data. Second, we describe the experimental setup in de-
tails. Finally, we demonstrate the results of compared ex-

Benchmarks #9FAB2 → #BF8A9 →
Prec. Rec. F1 Prec. Rec. F1

LSTM 0.61 0.33 0.36 0.59 0.43 0.48
ALSTM 0.65 0.37 0.40 0.57 0.46 0.49

FCN 0.66 0.35 0.38 0.57 0.45 0.50
LSTMFCN 0.65 0.42 0.46 0.57 0.59 0.57

ALSTMFCN 0.66 0.39 0.43 0.58 0.54 0.55
DANN 0.65 0.51 0.55 0.61 0.62 0.62
MSKT 0.67 0.76 0.69 0.62 0.71 0.66

Table 2: The performances of cross-oilfield reservoir classi-
fications.

periments, ablation study and performance analysis of the
source oilfield.

Dataset Description
The experimental data sets are collected from the real indus-
try exploration and production process of a famous oil and
gas company, i.e., PetroChina 1. These data sets contain a
large number of well logs in two main oilfield oilfields, i.e.,
#9FAB2 and #BF8A9. All the well information and oil-
field information have been desensitized to protect data pri-
vacy. Table 1 shows the statistics of experimental datasets.
For each oilfield, the wells have multiple types of sensor
data in the Log ASCII Standard (LAS) format, and differ-
ent oilfields have different sets of sensor types. As men-
tioned above, sensor data are always inconsistent with the
consideration of the cost and different drilling technologies.
As demonstrated in Table 1, we mainly used five common
well logs, i.e., GR, RT, AC, CAL, SP. Actually, there are 21
well logs, which including 16 specific well logs in #9FAB2
oilfield. In addition to five common logs, there are 7 discrim-
inative well logs in #BF8A9 oilfield. These specific well
logs will be used in SFL module.

Experimental Setup
Hyperparameters Setting. We set the size of the max
convolution window to 21 for well logs and designed three
convolution scales, i.e. 11, 15 and 21. The number of fil-
ters for each convolution was set to 256, 256 and 128. The
dimension of the state in the LSTM was set to 128. The di-
mension of well embedding Vk was set to 100. As a default
setting, the activation functions used in the convolution lay-
ers and fully connected layer were set to Rectified Linear
Unit (ReLU). All weight matrices are randomly initialized
by a uniform distribution. Our model was trained with an
initial learning rate of 0.01 and was exponentially decayed
by a factor of 0.75. The batch size of samples was set to
30000. We stop the training process when the loss on the
validation set stabilizes.

Comparison Methods. In order to demonstrate the ef-
fectiveness of MSKT, we compare it with several meth-
ods which are mainly grouped into two categories, i.e., the
time series classification method and the domain adaption

1http://www.petrochina.com.cn/
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Benchmarks #9FAB2 → #BF8A9 →
Prec. Rec. F1 Prec. Rec. F1

Only MSE 0.65 0.42 0.49 0.58 0.62 0.59
MSE+KA 0.67 0.50 0.54 0.58 0.63 0.60

MSE+KAT 0.68 0.53 0.56 0.62 0.70 0.63

Table 3: The ablation study of our proposed method.

method. Our compared methods include LSTM (Hochre-
iter and Schmidhuber 1997), ALSTM (Bahdanau, Cho, and
Bengio 2014), FCN (Wang, Yan, and Oates 2017), LSTM-
FCN (Karim et al. 2018; Karim, Majumdar, and Darabi
2019), ALSTMFCN (Karim et al. 2018; Karim, Majumdar,
and Darabi 2019) and DANN (Ganin et al. 2016).

Evaluation Metrics. To evaluate the reservoir classifica-
tion performances, here we select three widely used widely-
used metrics (Zheng et al. 2014; Tonutti et al. 2019), i.e.,
Precision(Prec.), Recall(Rec.) (Liu et al. 2012), and F1 mea-
sure. Considering our task is a multi-class classification
problem, we use the weighted average scores to evaluate
the performances of our proposed MSKT and all compared
methods. Specifically, we weight the metrics of each class
by the number of samples from that class.

Experimental Results
Performance Comparison. To demonstrate the effective-
ness of our proposed model, we compare MSKT with other
state-of-the-art methods of both time series and domain
adaption on the cross-oilfield reservoir classification task.
We conduct the cross-oilfield experiments between two oil-
fields. Then, we have two reservoir classification tasks, i.e.,
“#9FAB2 → ” and “#BF8A9 → ”. We use the notation
“#9FAB2 →” represents the task which transfers from the
source oilfield #9FAB2 to the target oilfield #BF8A9.

Table 2 shows the performances of reservoir classifica-
tions of our proposed MSKT and all compared methods.
Overview, our proposed MSKT achieves the best perfor-
mance on both datasets. Specifically, MSKT outperforms all
compared methods with the improvement by up to 1.6%,
14.5% and 6.1% in precision, recall and F1, respectively.
That clearly demonstrates the effectiveness of our proposed
method. When compared with the non-transfer model, our
proposed MSKT achieves over 15.7% improvement in F1
score, which clearly demonstrates the importance of do-
main adaption for our cross-oilfield reservoir classification
task. Moreover, we can also observe that the transfer learn-
ing method DANN achieves the second-best performance.
That indicates the effectiveness of learning the oilfield-
invariant features for the cross-oilfield reservoir classifica-
tions. Finally, we test the statistical significance between the
MSKT and all compared methods. We find in recall and F1,
our proposed MSKT has largely significant improvements
(p− value<0.001) over the result set of all other compared
methods. And in precision, MSKT achieve significant im-
provements (p− value<0.01).

Ablation Study. The strengths of MSKT model come
from three novel components, i.e., the Multi-scale Sen-
sor Extraction (MSE), Specific Feature Learning (SFL) and
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Figure 4: The illustration of reservoir classification perfor-
mances on the source oilfield.

Knowledge-Attentive Transfer (KAT). To justify the designs
of each module in MSKT, we investigate the influence of
each important module. We study the performance of the
following three variants, i.e., only MSE module, MSE mod-
ule with the knowledge graph embedding (MSE+KG) and
MSE with KAT module (MSE+KAT). Table 2 shows the
performances of these variants. Moreover, we have the re-
sults of MSKT equipped all components (MSE+KAT+SFL)
in Table 2. From Table 2 and Table 3, we have following
observations: 1) The MSKT with SFL module outperform
MSE+KAT model with a large margin, which indicates that
taking advantage of the specific features is important for
cross-oilfield reservoir classifications. 2) With KAT module,
our proposed method MSE+KAT have achieved better per-
formance than other variants and traditional method DANN.
It indicates the effectiveness of our proposed knowledge-
attentive transfer learning method. 3) Compare all the meth-
ods which do not have transfer learning strategy, we find
our proposed MSE+KG model has achieved the best per-
formance. One possible reason is that the knowledge graph
brings the power of extensive geological information cross
two different oilfields via the unified KG embedding.

Analysis on Source Performances. In the exploration and
production process of the petroleum company, experts care
the method performances not only on the target oilfield but
also the source oilfield. To that end, we further validate the
effectiveness of our models on the source oilfield. Figure 4
shows reservoir classification performances on the source
oilfield. From Figure 4, we have the following observa-
tions: 1) Our proposed MSKT outperforms all other com-
pared methods with a large margin. One possible reason is
that MSKT can take advantages of specific well log features.
2) We find DANN model achieves better performance than
other non-transfer models on the target oilfield but fail to
outperform sever models on the source oilfield. That indi-
cates the transfer learning strategy may be negative to the
performances on the source oilfield.

Conclusion and Future Work
In this paper, we presented a focused study on cross-oilfield
reservoir classification problem. For transferring the geolog-
ical knowledge from a source oilfield to a target oilfield,
a novel Multi-scale Sensor Knowledge Transfer (MSKT)
model was proposed. Specifically, we first proposed Multi-
scale Sensor Extraction (MSE) to obtain the multi-scale fea-
ture representations of geological characteristics from multi-
variate well logs. Meanwhile, for addressing the inconsistent
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features between the source and target oilfield, we proposed
an encoder-decoder module, i.e., Specific Feature Learning
(SFL), to learning the additional geological features from
discriminative well logs in both oilfields. Then, we devel-
oped a knowledge-Attentive Transfer (KAT) module to learn
the feature-invariant representations and transfer the geolog-
ical knowledge from a source oilfield to a target oilfield. Fi-
nally, we evaluated our proposed method by conducting ex-
tensive experiments with real-world industrial datasets. The
experimental results clearly demonstrated the effectiveness
of our proposed solution to transfer the geological knowl-
edge and generate the cross-oilfield reservoir classifications.

In the future, we would like to consider the characteris-
tics and impact of different sensors (such as GR, AC) for the
prediction. Moreover, we are also willing to integrate more
geological domain knowledge and make our results more ex-
plainable. Last but not least, we will extend our proposed
MSKT to much more sensor data mining scenarios, such as
cross-domain anomaly detection. Although our work mainly
focused on the cross-domain learning problem in the oil and
gas industry, there are some similar problems in other real
industrial scenarios. We hope our study can bring some new
insights from the application view of sensor data mining and
the technical view of exploiting transfer learning for cross-
domain series modeling.
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